

qNMR – The do's and don'ts

Gert Steurs February 10th 2022

Quantitative NMR (qNMR)

Relative concentration determination

- Concentration ratio of different compounds
 - Purity determination
 - Determination of isomer ratio

Absolute concentration determination

- Absolute concentration of one or more compounds
- With internal standard (or using Eretic2)

Internal standards

- Calibrant properties
 - No structural relation to compound of interest necessary
 - Must contain nucleus of interest
 - Relatively simple spectrum (preferably only singlets)
 - Must have peak(s) that don't overlap with compound of interest
 - Short T₁
 - Known purity
 - Chemically inert
 - Non-hygroscopic
 - Highly soluble in deuterated solvent
 - Low volatility
- List of calibrants: <u>https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/</u> marketing/global/documents/101/854/qnmr-brochure-rjo.pdf

qNMR – Considerations

Sample preparation

- Homogeneous sample
- When using a standard: known amounts of internal standard
- Close sample tube properly to avoid evaporation
- Clean the tube very well
- Sample must be proper volume (4.2 cm = 500 μL!) and **exactly** in middle of TX coil

- Relaxation delay in sec
- At the very beginning of every scan
- Allows for all magnetization to relax back to z-equilibrium
- For qNMR $d1 \ge 5^*T_1$ for 90° pulses or $d1 \ge 3^*T_1$ for 30° pulses
 - T₁ is the longitudinal relaxation constant

$$M_z(t) = M_z^0 \left[1 - \exp\left(-\frac{t}{T_1}\right) \right] \qquad M_z(t) = M_z^0 \exp\left(-\frac{t}{T_1}\right) \left\lfloor \frac{\sqrt{3}}{2} - 1 \right\rfloor + M_z^0$$

Nucleus	Typical T ₁ (sec)	Standard pulseprogram on AV III HD 400	Standard d1 on AV III HD 400 (sec)	Recommended d1 if T ₁ if unknown (sec)
¹ H	0.5-10	zg30 (30°)	1	30
¹³ C{ ¹ H}	0.1-30	zgig30 (30°)	2	90
¹⁹ F	0.2-15	zgflqn (90°)	1	75
³¹ P	0.1-60	zg30* (30°)	2	180

*No pulseprogram for ¹H-decoupled ³¹P spectra (³¹P{¹H}) is available for qNMR at the moment!

¹H T₁ experiment *via* inversion recovery

- Experiment 2D 1H T1 (IR) (Bruker AV III HD 400)
- Pseudo-2D experiment
- Via inversion-recovery experiment
- Tuning and matching (atma) with 'exact' parameter (may take long!)
- Performs fast pulse calibration before acquisition
- Only for
 - ¹H nuclei
 - Non-dilute samples
 - Samples with $T_1 < 5-10$ sec
- Long experiment (minimal parameters = 26 min + atma exact!)

¹H T₁ experiment via inversion recovery

- Acquisition
 - Choose experiment '2D 1H T1 (IR)'
 - Do <u>NOT</u> touch TD, AQ, DS (4*n), NS (8*n)
 - Set O1P to middle of peak range or middle of peak of interest
 - Set D1 to (estimated) 5^{T_1} (90 ° flip angle)
- Processing
 - Execute **xaup**, or
 - Follow TopSpin's 'Advanced NMR Experiments Manual', section 'T1 Experiment' if you want to know what you are doing
 - Do <u>NOT</u> perform regular 2D or 1D processing, or your data will be lost!

¹H T₁ experiment *via* inversion recovery

3 Relaxation WDB-GS-	Salanthamine-Test-ICON 19 1 /opt/nmrdata/lconNMRdata/data/nmrsu/nmr		Dataset : /ont/nmrdata/TconNMPdata/data/nmrsu/nmr/WDB-GS-Gala/
<mark>≫>as</mark> – + ↓	🖇 📰 <mark>lin lg sqilg 🗂 🖱 🗊 🚹</mark>		INTENSITY fit:
Fitting type	71	-6]	1(t)=1(0)+P*exp(-t/11)
 Intensity Area 	/[()=[0]+P*exp(-t/1) Peak 2 at 3.860 ppm	Ŧ	10 points for Peak 1, Peak Point at 4.637 ppm Results Comp. 1
2 of 4 Peak 1 at 4.637 ppm T1 = 2.042s Peak 2 at 3.860 ppm	11=1.8235	200	I[0] = 9.866e-01 P = -1.872e+00 T1 = 2.042s SD = 2.177e-02
11 = 1.8235 Peak 3 at 3.302 ppm T1 = 676.774m Peak 4 at 2.723 ppm T1 = 812.058m			tau ppm integral intensity 10.000m 4.636 -1.3218e+08 -2.5693e+07 50.000m 4.636 -1.2549e+08 -2.4427e+07 100.000m 4.636 -1.177e+08 -2.2955e+07 260.000m 4.636 -0.6329.07
		1	250.000m 4.636 -9.63224407 -1.88214407 500.000m 4.636 -6.88564647 -1.2899e407 1.000s 4.636 -1.8829e407 -3.7634e406 2.000s 4.636 4.1821e407 7.9352e406 4.000s 4.636 1.0153e408 1.9417e407 15.000s 4.636 1.4857e408 2.8504e407 60.000s 4.636 1.4923e408 2.8616e407
		-	10 points for Peak 2, Peak Point at 3.860 ppm Results Comp. 1
		- 100	I[0] = 9.956e-01 $P = -1.933e+00$ $T1 = 1.823s$ $SD = 4.402e-03$
		- 200	tau ppm integral intensity 10.000m 3.857 -4.0787e+08 -2.5237e+08 50.000m 3.857 -3.8805e+08 -2.4074e+08 100.000m 3.857 -3.6529e+08 -2.2752e+08 250.000m 3.857 -2.9885e+08 -1.8636e+08 500.000m 3.857 -2.911e+08 -1.2696e+08 1.0005 3.857 -4.3528e+07 -3.1943e+07 2.0005 3.857 3.6644e+08 2.0929e+08 15.0005 3.857 4.5467e+08 2.7137e+08 60.0005 3.857 4.5467e+08 2.7137e+08
	0 2 4 6 8 10 [s]		00.0005 3.857 4.5582e+08 2.703e+08

Obtain the acquisition – pulse sequence: decoupling or not?

- No decoupling (hence, 'with coupling')
 - Spectra are more complex
 - Experimentally easier
 - Take satellite peaks into account during analysis! (*e.g.* ¹³C-decoupled ¹H spectra)
- Decoupling (during acquisition of FID)
 - Spectra are easier to analyze
 - Appropriate decoupling power necessary
 - <u>No NOE enhancement</u>! Hence, decoupling may only happen during acquisition time.
 - No power-gated (zgpg or zgpg30) or gated decoupling (zggd or zggd30)
 - Only inverse-gated decoupling (zgig or zgig30)

Otal acquisition – pulse sequence: decoupling or not?

Obtained the acquisition – spectral width (SW)

- SW should be large enough to avoid attenuation of peaks at the edges of the spectrum due to receiver filters
- Large SW aides with baseline corrections
- SW should contain 20% of the peak region of baseline on both sides

Obtained acquisition – excitation bandwidth

- Uniform excitation of entire SW necessary
- Problem: only (small) part of bandwidth is equally excited during pulse

Obtained to be address the second second

• Excitation profile (centered around O1P) follows $f(\delta) = sinc\left(\frac{\pi \times \delta \times SF \times p}{10^6}\right)$ with SF = spectrometer frequency (MHz), p = pulse length (µsec)

- For uniform excitation (error < 1%), $SW \cong 156\ 000 \times \frac{1}{SF \times p}$
- Choose calibrant with similar δ to analyte
- Set middle of the spectrum (O1P) at <u>exact</u> center between peaks of calibrant and analyte, so that excitation error is equal for both signals (diminishes relative error)
- Uniform excitation problematic for <u>high-frequency nuclei with large SW (e.g.</u> ¹⁹F) e.g. For ¹⁹F on AV III HD 400: SW < 26 ppm for uniform bandwidth (error < 1%)
- <u>https://nmrfacilities.chem.kuleuven.be/applet/excitation_profile</u>

Obtain the second se

Excitation profile of a 10.05 μ s pulse at 400.17 MHz

Data acquisition – signal-to-noise ratio (S/N)

- Good S/N essential for accurate integration
- Remember that acquiring N times more scans, increases the S/N only \sqrt{N} times
- For integration errors < 1%, S/N must be \geq 150/1 (S/N instrument dependent!)
- Calculate S/N of all the peaks you want to integrate using sinocal

Data acquisition – signal-to-noise ratio (S/N)

Obtained the acquisition – digital resolution (FIDRES)

- $FIDRES = \frac{spectral \ width \ in \ Hz}{amount \ of \ real \ data \ points} = \frac{SWH}{TD/2} = \frac{1}{acquisition \ time \ in \ sec} = \frac{1}{AQ}$
- Every peak should consist of \geq 5 data points above half-height (red points) \Rightarrow every peak consists of \geq 10 data points in total (red points + orange points)
- Example
 - Peak with W = 1 Hz
 - At least 5 points above half-height
 ⇒ separation between points = 0.2 Hz
 - FIDRES should be ≤ 0.2 Hz

Obtain the second se

Peak described by 2 data points covering the linewidth

Obtain the second se

Peak described by 14 data points covering the linewidth

Obtained the acquisition of the AQ Output Data acquisition – acquisition time (AQ)

- Acquisition time (AQ) is time during which FID is recorded
- Should be large enough, so that FID is not truncated
- Should not be too large, to prevent additional noise in spectrum
- Truncation of FID will lead to sinc wiggles and improper integration

Data acquisition – acquisition time (AQ)

Obtain the sample of the sa

- Accurate shimming is essential for qNMR
- Spinning the sample is discouraged (prevents spinning sidebands)

3 Data processing – zerofilling

- Zerofilling = adding 'zeros' after the FID signal
- Increases spectral resolution significantly
- Aides with integral precision
- Can be performed by setting SI to a value larger than TD/2 (you will zerofill once for every increase of SI by TD/2). Perform Fourier transform (ft) and phase correction (apk) afterwards.

B Data processing – zerofilling

Obtained by Data processing – exponential weighting function

- Forces FID signal quicker to zero by multiplying it with $W_{LB} = \exp(-\pi \times LB \times t)$
- Increases S/N
- Decreases resolution (peak broadening)

• Specify LB (line broadening factor) in Hz and perform efp

3 Data processing – phase correction

- Drastic impact on integration
- Correct the phase automatically (apk, apks, apkm) or manually
- For specific heteronuclei ¹³C, ¹⁹F and ³¹P: apbk (phase + baseline correction)

B Data processing – baseline correction

- Drastic impact on integration
- Correct the spectral baseline automatically (abs, abs n) or manually
- For specific heteronuclei ¹³C, ¹⁹F and ³¹P: apbk (phase + baseline correction)

Obtained by Data analysis – choosing the right peak

- Quantification signals should
 - be unambiguously assigned
 - be as simple as possible (*i.e* singlet > doublet > ... > complex multiplet)
 - show as little overlap as possible
 - NOT be from exchangeable nuclei (*e.g.* R-C(O)-NH-R, R-OH, R-NH₂, ...)

4 Data analysis – integration

- Peaks are Lorentzian according to $L(x) = \frac{h}{1 + \left(\frac{x}{W}\right)^2}$ (*h* = height of the peak; *W* = linewidth at half-height)
- In theory, peaks should be integrated from $-\infty$ to $+\infty$
- In practice, integral regions should cover ≥ 25 x W in both directions in order to cover 99% of the area or ≥ 75 x W in both directions in order to cover 99.9% of the area

qNMR KU LEUVEN

Otata analysis – deconvolution

- For < 1% integration error, two (singlet) peaks should be separated by at least 50 times the linewidth W
- Not-well-separated signals or multiplets can be deconvolved
- Deconvolution comprises

40

- fitting all the lines of the peaks in the multiplet
- reproducing each of the peaks individually
- After deconvolution, the peaks can be integrated separately

Otata analysis – deconvolution

- TopSpin can easily deconvolve peaks and display corresponding integral areas
- In Integration mode, right click on integral → 'Deconvolusion' → 'Deconvolve and Display Integrals'
- For advanced deconvolution, go to 'Analyse' → 'Line Shapes' → 'Fit Lorenz/Gauss function (dcon)'

Omitting the internal standard – Eretic2

Eretic2 – What is Eretic2?

- <u>Electronic Reference To In vivo Concentration 21</u>
- Quantification method allowing to (absolutely) quantify an NMR sample, without adding a standard to the sample
- Determine concentration of unknown sample by correlating absolute integral values to those of a reference spectrum with known concentration

Eretic2 allows the user to 'calibrate the spectrometer' and use this calibration for absolute quantification of a(nother) sample.

$(\mathbf{2}$ euven Chem&Tech Liquid NMR Core Facilities

Eretic2 – How does it work?

• Eretic2

$$c_{unk} = \mathbf{k}c_{ref} \frac{A_{unk}T_{unk}\vartheta_{unk}NS_{ref}}{A_{ref}T_{ref}\vartheta_{ref}NS_{unk}}$$

with

- indices *unk* and *ref* representing unknown and reference sample, resp.
- c concentrations
- *A* integration values
- k correction factor (different RG, incomplete relaxation, ...)
- T measurement temperature (K)
- ϑ pulse length (µsec)
- NS number of scans

Eretic2 – What do you need?

1. For calibration

- ANY reference sample with known
 - Concentration (in mM),
 - Molar mass (g/mol)
 - (total) sample volume (mL)*
 - Assignment for at least one peak
- Quantitative measurement conditions!

2. For quantification

- Your solubilized compound with known
 - Molar mass (g/mol)
 - (total) sample volume (mL)*
 - Assignment for at least one peak
- Quantitative measurement conditions!

Eretic2 – What do you need?

- Experiment **1D 1H QNMR (30)** (Bruker AV III HD 400)
- 1D sequence using regular pulse program zg30
- Tuning and matching (atma) with 'exact' parameter (may take long!)
- Performs fast pulse calibration before acquisition
- Only for
 - ¹H nuclei
 - Non-dilute samples
 - Samples with $T_1 < 5-10$ sec
- All other requirements for qNMR (D1, SINO, SW, O1P, ...) must still be set by the user!
- Intended for use with Eretic2 method

- For measuring reference sample with known concentration
 - Run experiment with 1D 1H QNMR (30) under <u>quantitative</u> conditions
 - Process the spectrum
 - Integrate as many known peaks as possible (to lower standard deviation)
 - Right-click on the selected peaks and select Eretic → Define as Eretic Reference

- For measuring reference sample with known concentration
 - Fill in required sample information (concentration, Mw, sample

volume)

1 30 2020	ng 20 uL of ElOAc to 5 mL	with CDC13				
se Sensitivi) ppm / 2520 - 8 0114	ty: 0.0625				×	
INE REGION N ine: Drag us	Reference dataset					
	Name C:	\Users\u0110721\Box Sync\Proje	ect Bicyclopentanes\NMRs\WDB-	GS-BCP-Eretic2-Calibration-40.		
	Concentration [mmol/l] 40	5000				
	Number of atoms	Region start [ppm]	Region end [ppm]	Molecule name	Molar mass [g/mol]	
	3	2.132516	1.979928	EtOAc	88.1060 + -	
	3	1.347363	1.218571	EtOAc	88.1060 + -	
					`	
					OK Cancel	

- For measuring unknown sample
 - Use same(!) acquisition parameters as used for reference spectrum
 - Use same(!) processing parameters as used for reference spectrum
 - Integrate peaks from analyte
 - Right-click on the selected peaks and select Eretic → Calculate Concentration

- For measuring unknown sample
 - Fill in required sample information (concentration, Mw, sample volume)

• For measuring unknown sample

Concentrations are displayed above the peaks
 I a d f

Eretic2 – General remarks

- Optimal results are obtained for reference and unknown samples in same solvent and similar concentrations
- Use calibration file from same probe and spectrometer
- Eretic2 reference should be reliable up to 60 °C difference between reference sample and unknown sample
- Eretic2 can also be used with internal reference
- Under normal and correct operational conditions, error should be within 5% (empirically on Bruker AV III HD 400)

qNMR – The do's and don'ts

Gert Steurs February 10th 2022